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A long-lasting challenge: scale variation



Carnegie Mellon

Background

5

Prior methods addressing scale variation

Image pyramid
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Prior methods addressing scale variation

Anchor boxes [Ren et al, Faster R-CNN]
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Prior methods addressing scale variation

Pyramidal feature hierarchy, e.g. [Liu et al, SSD]
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Prior methods addressing scale variation

Feature pyramid network [Lin et al, FPN, RetinaNet]
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Prior methods addressing scale variation

Augmentation

Balanced FPN [Pang et al, Libra R-CNN]
HRNet [Wang et al]
NAS-FPN [Ghiasi et al]
EfficentDet [Tan et al]
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Combining feature pyramid with anchor boxes

• Smaller anchor associated with lower pyramid levels (local 
fine-grained information)

• Larger anchor associated with higher pyramid levels (global 
semantic information)

feature pyramid

small anchors

medium anchors

large 
anchors

anchor-based 
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Implicit feature selection by anchor boxes

• IoU-based

• Heuristic guided

feature pyramid

50x50

60x60

small anchors

medium anchors
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anchors

ad-hoc heuristics!
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Problem: feature selection by heuristics may not be optimal.

Question: how can we select feature level based on semantic 
information rather than just box size?

Answer: allowing arbitrary feature assignment by removing the 
anchor matching mechanism (using anchor-free methods), 
selecting the most suitable feature level/levels.
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The general concept

• Each instance can be arbitrarily assigned to a single or 
multiple feature levels.

anchor-free 
head

anchor-free 
head
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head

instancefeature selection
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Instantiation

• Network architecture

• Ground-truth and loss

• Feature selection: heuristic guided vs. semantic guided
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Network architecture (on RetinaNet)

feature pyramid

class+box
subnets

class+box
subnets

class+box
subnets
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Network architecture (on RetinaNet)
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Ground-truth and loss (similar to DenseBox [Huang et al])

WxH
xK

WxH
x4

“car” class

focal loss

IoU loss

class output

box output

anchor-free head
for one feature level
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Question: what is a good representation of semantic 
information to guide feature selection?

Our assumption: semantic information is encoded in the 
network loss.
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feature pyramid

focal loss

IoU loss

focal loss

IoU loss

focal loss

IoU loss
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Question: is it enough to select just one feature level for each 
instance?
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Can we use similar features from multiple levels to further 
improve the performance?
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Semantic guided feature selection: soft version

feature pyramid

feature 
selection net

RoIAlign
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l Data
uCOCO Dataset, train set: train2017, validation set: val2017, test set: 

test-dev

l Ablation study
uTrain on train2017, evaluate on val2017
uResNet-50 as backbone network

l Runtime analysis
uTrain on train2017, evaluate on val2017
uRun on a single 1080Ti with CUDA 10 and CUDNN 7

l Compare with state of the arts
uTrain on train2017 with 2x iterations, evaluate on test-dev
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Ablation study: the effect of feature selection

Heuristic 
guided

Semantic guided
AP AP50 AP75 APS APM APLHard 

selection
Soft 

selection

RetinaNet
(anchor-
based)

 35.7 54.7 38.5 19.5 39.9 47.5

Ours 
(anchor-

free)

 35.9 54.8 38.1 20.2 39.7 46.5

 37.0 55.8 39.5 20.5 40.1 48.5

 38.0 56.9 40.5 21.0 41.1 50.2



Carnegie Mellon

Experiments

31

Ablation study: the effect of feature selection

Heuristic 
guided

Semantic guided
AP AP50 AP75 APS APM APLHard 

selection
Soft 

selection

RetinaNet
(anchor-
based)

 35.7 54.7 38.5 19.5 39.9 47.5

Ours 
(anchor-

free)

 35.9 54.8 38.1 20.2 39.7 46.5

 37.0 55.8 39.5 20.5 40.1 48.5

 38.0 56.9 40.5 21.0 41.1 50.2

Anchor-free branches with heuristic feature selection can achieve
comparable performance with anchor-based counterparts.
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Ablation study: the effect of feature selection

Heuristic 
guided

Semantic guided
AP AP50 AP75 APS APM APLHard 

selection
Soft 

selection

RetinaNet
(anchor-
based)

 35.7 54.7 38.5 19.5 39.9 47.5

Ours 
(anchor-

free)

 35.9 54.8 38.1 20.2 39.7 46.5

 37.0 55.8 39.5 20.5 40.1 48.5

 38.0 56.9 40.5 21.0 41.1 50.2

Hard version of semantic guided feature selection 
chooses more suitable feature levels than heuristic guided selection.



Carnegie Mellon

Visualization of hard feature selection

33



Carnegie Mellon

Experiments

34

Ablation study: the effect of feature selection

Heuristic 
guided

Semantic guided
AP AP50 AP75 APS APM APLHard 

selection
Soft 

selection

RetinaNet
(anchor-
based)

 35.7 54.7 38.5 19.5 39.9 47.5

Ours 
(anchor-

free)

 35.9 54.8 38.1 20.2 39.7 46.5

 37.0 55.8 39.5 20.5 40.1 48.5

 38.0 56.9 40.5 21.0 41.1 50.2

Hard selection doesn’t fully explore the network potential. 
Using similarity from multiple features is helpful.
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Ablation study: the effect on different feature pyramids

Feature 
pyramid

Heuristic 
guided 

selection

Semantic 
guided 

selection
AP AP50 AP75 APS APM APL

FPN
 35.9 54.8 38.1 20.2 39.7 46.5

 38.0 56.9 40.5 21.0 41.1 50.2

BFP
 36.8 57.2 39.0 22.0 41.0 45.9

 38.8 58.7 41.3 22.5 42.6 50.8
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Runtime analysis

Backbone Method AP AP50
Runtime

(FPS)

ResNet-50

RetinaNet 
(anchor-based) 35.7 54.7 11.6

Ours 
(anchor-free) 38.8 58.7 14.9

ResNet-101

RetinaNet 
(anchor-based) 37.7 57.2 8.0

Ours 
(anchor-free) 41.0 60.7 11.2

ResNeXt-101

RetinaNet 
(anchor-based) 39.8 59.5 4.5

Ours 
(anchor-free) 43.1 63.7 6.1
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Comparison with state of the arts
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Free feature selection is one of major differences between 
anchor-free and anchor-based methods.

Semantic guided feature selection is the key!

anchor-free 
head

anchor-free 
head

anchor-free 
head

instancefeature selection

feature pyramid
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