Carnegie Mellon

Feature Selection Matters for Anchor-Free Object Detection

Chenchen Zhu

Carnegie Mellon University

04/29/2020

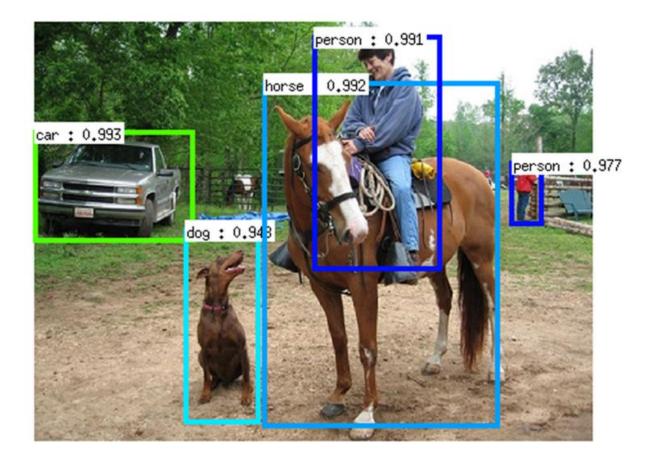
Overview

- Background
- Motivation
- Feature Selection in Anchor-Free Detection
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Feature selection
- Experiments

Overview

- Background
- Motivation
- Feature Selection in Anchor-Free Detection
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Feature selection
- Experiments

A long-lasting challenge: scale variation



Prior methods addressing scale variation

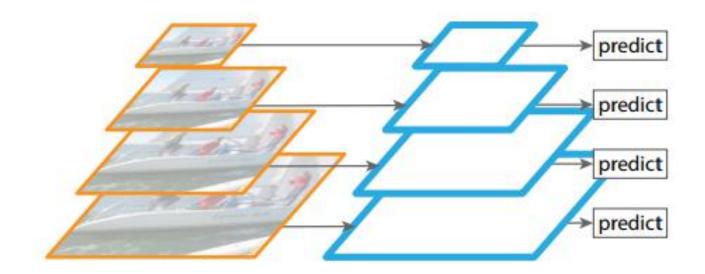
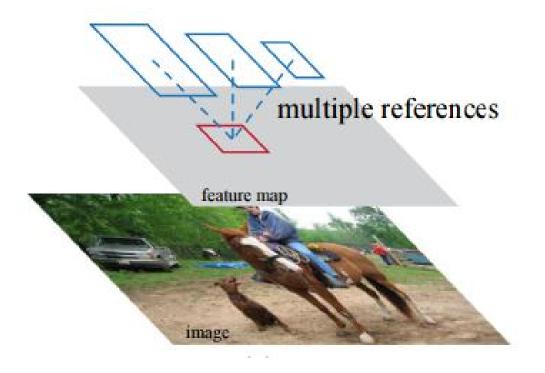


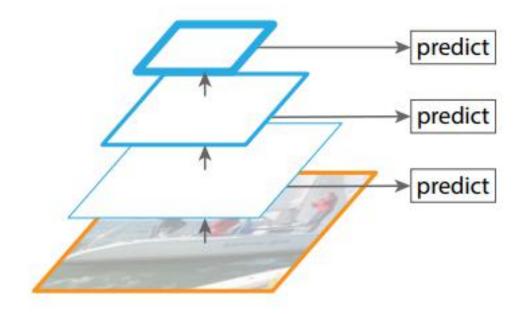
Image pyramid

Prior methods addressing scale variation



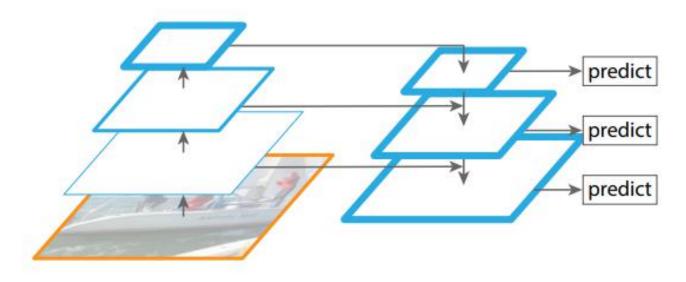
Anchor boxes [Ren et al, Faster R-CNN]

Prior methods addressing scale variation



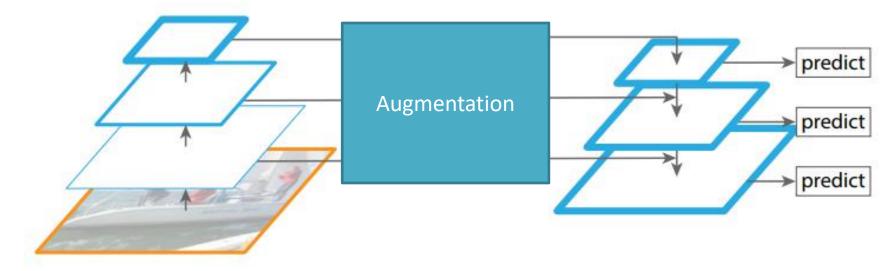
Pyramidal feature hierarchy, e.g. [Liu et al, SSD]

Prior methods addressing scale variation



Feature pyramid network [Lin et al, FPN, RetinaNet]

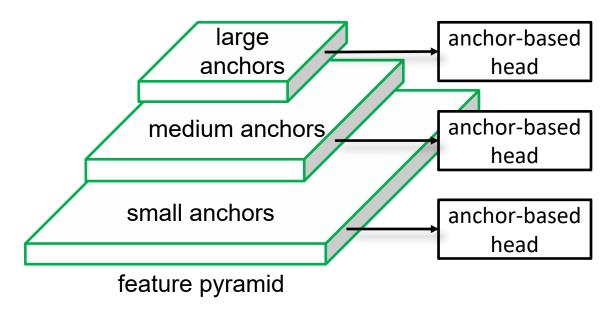
Prior methods addressing scale variation



Balanced FPN [Pang et al, Libra R-CNN] HRNet [Wang et al] NAS-FPN [Ghiasi et al] EfficentDet [Tan et al]

Combining feature pyramid with anchor boxes

- Smaller anchor associated with lower pyramid levels (local fine-grained information)
- Larger anchor associated with higher pyramid levels (global semantic information)



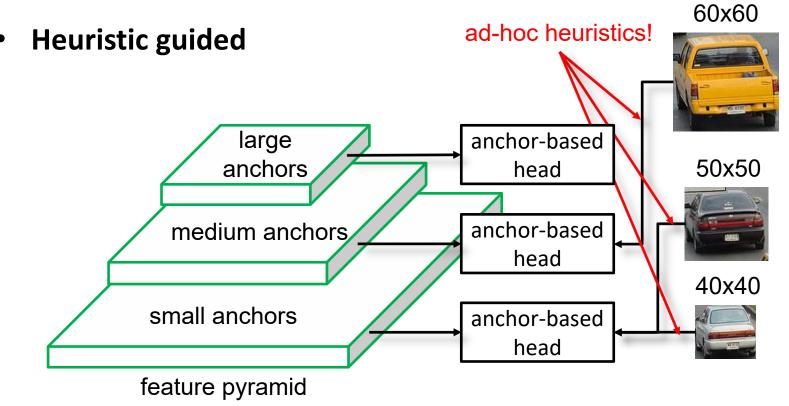
Overview

- Background
- Motivation
- Feature Selection in Anchor-Free Detection
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Feature selection
- Experiments

Motivation

Implicit feature selection by anchor boxes

IoU-based



Motivation

Problem: feature selection by heuristics may not be optimal.

Question: how can we select feature level based on semantic information rather than just box size?

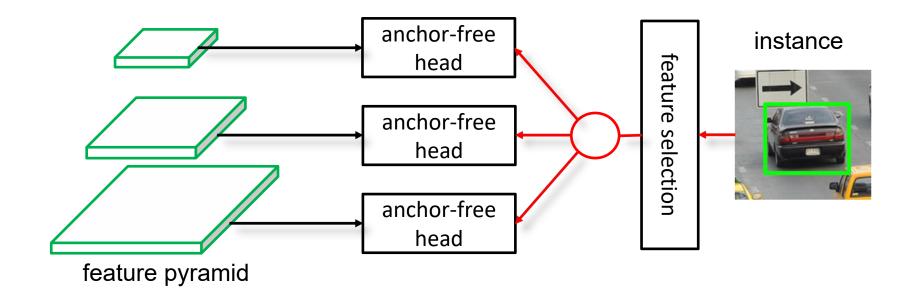
Answer: allowing arbitrary feature assignment by removing the anchor matching mechanism (using anchor-free methods), selecting the most suitable feature level/levels.

Overview

- Background
- Motivation
- Feature Selection in Anchor-Free Detection
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Feature selection
- Experiments

The general concept

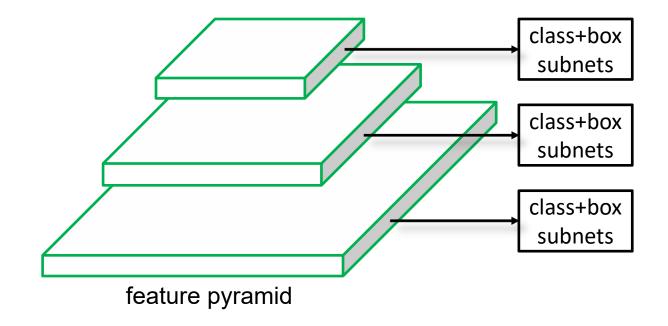
• Each instance can be *arbitrarily* assigned to a single or multiple feature levels.



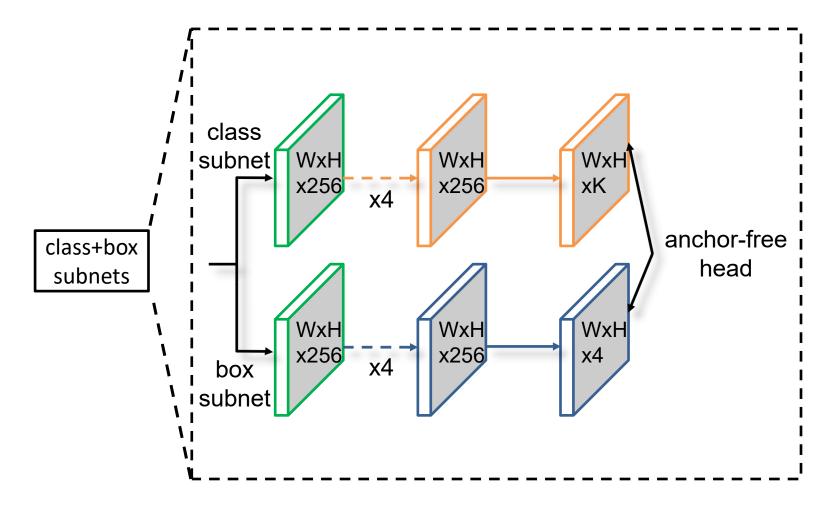
Instantiation

- Network architecture
- Ground-truth and loss
- Feature selection: heuristic guided vs. semantic guided

Network architecture (on RetinaNet)



Network architecture (on RetinaNet)

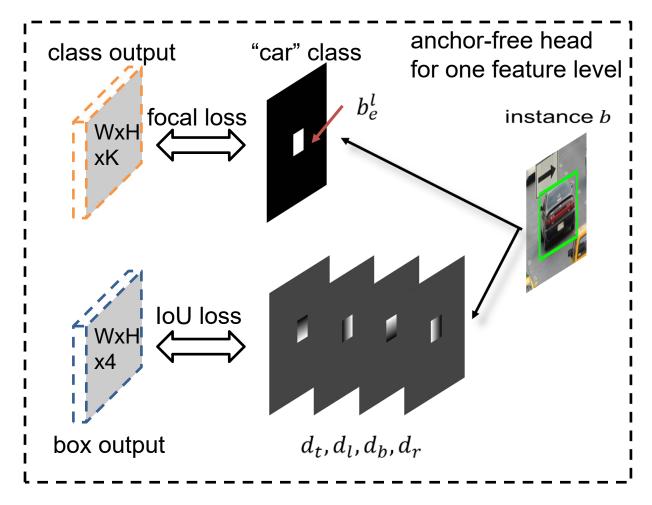


Ground-truth and loss

• Definitions

- Instance box: b = [x, y, w, h]
- Projected box on P_l : $b_p^l = [x_p^l, y_p^l, w_p^l, h_p^l] = b/2^l$
- Effective box on P_l : $b_e^l = [x_p^l, y_p^l, \epsilon_e w_p^l, \epsilon_e h_p^l]$
- For pixel (i, j) in b_e^l , $[d_{t_{i,j}}^l, d_{l_{i,j}}^l, d_{b_{i,j}}^l, d_{r_{i,j}}^l]$ are distances of (i, j) to the top, left, bottom, right boundaries of b_p^l , respectively.

Ground-truth and loss (similar to DenseBox [Huang et al])



Heuristic guided feature selection

$$l' = \left[l_0 + \log_2(\sqrt{wh}/224)\right]$$

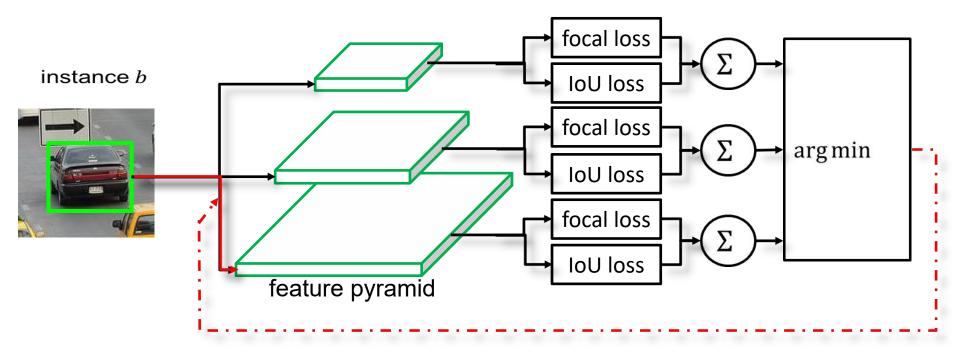
where l_0 is the target level to which an instance with $w \times h = 224^2$ is mapped [Lin et al, FPN].

Question: what is a good representation of semantic information to guide feature selection?

Our assumption: semantic information is encoded in the network *loss*.

Semantic guided feature selection: hard version

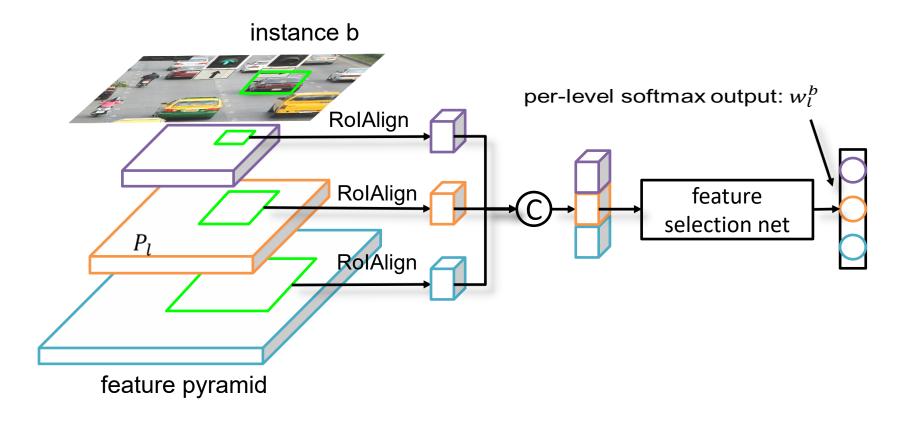
$$L^* = \arg\min_{l} L^b_{FL}(l) + L^b_{IoU}(l)$$



Question: is it enough to select just one feature level for each instance?

Can we use similar features from multiple levels to further improve the performance?

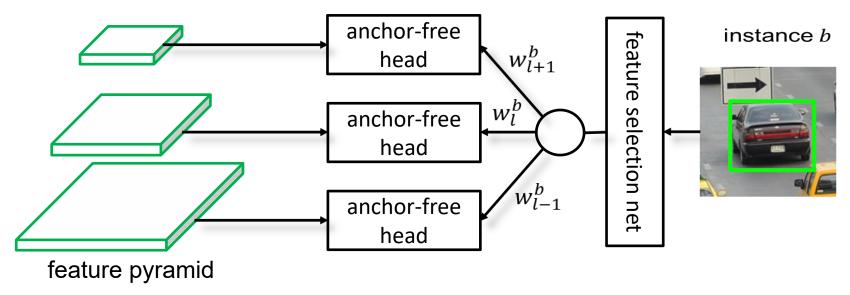
Semantic guided feature selection: soft version



Semantic guided feature selection: soft version

$$Loss^{b} = \sum_{l} w_{l}^{b} \left[L_{FL}^{b}(l) + L_{IoU}^{b}(l) \right]$$

This can also be viewed as dividing an instance into several proportions and assigning each proportion to a level.



Overview

- Background
- Motivation
- Feature Selection in Anchor-Free Detection
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Feature selection
- Experiments

Data

COCO Dataset, train set: train2017, validation set: val2017, test set: test-dev

• Ablation study

Train on train2017, evaluate on val2017

ResNet-50 as backbone network

Runtime analysis

Train on train2017, evaluate on val2017

Run on a single 1080Ti with CUDA 10 and CUDNN 7

Compare with state of the arts

Train on train2017 with 2x iterations, evaluate on test-dev

Ablation study: the effect of feature selection

	Heuristic guided	Semantic guided							
		Hard selection	Soft selection	AP	AP ₅₀	AP ₇₅	AP _s	AP _M	APL
RetinaNet (anchor- based)	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
Ours	\checkmark			35.9	54.8	38.1	20.2	39.7	46.5
		\checkmark		37.0	55.8	39.5	20.5	40.1	48.5
			\checkmark	38.0	56.9	40.5	21.0	41.1	50.2

Ablation study: the effect of feature selection

	Heuristic guided	Semantic guided							
		Hard selection	Soft selection	AP	AP ₅₀	AP ₇₅	AP _s	AP _M	APL
RetinaNet (anchor- based)	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
Ours	\checkmark			35.9	54.8	38.1	20.2	39.7	46.5
(anchor- free)		\checkmark		37.0	55.8	39.5	20.5	40.1	48.5
			\checkmark	38.0	56.9	40.5	21.0	41.1	50.2

Anchor-free branches with heuristic feature selection can achieve comparable performance with anchor-based counterparts.

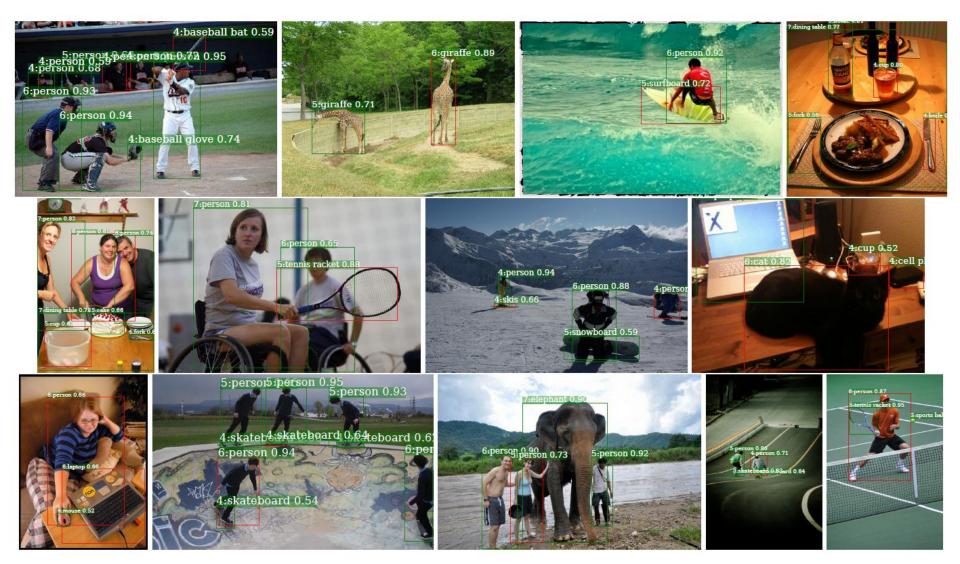
Ablation study: the effect of feature selection

	Heuristic guided	Semantic guided							
		Hard selection	Soft selection	AP	AP ₅₀	AP ₇₅	AP _s	AP _M	APL
RetinaNet (anchor- based)	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
Ours	\checkmark			35.9	54.8	38.1	20.2	39.7	46.5
(anchor- free)		\checkmark		37.0	55.8	39.5	20.5	40.1	48.5
			\checkmark	38.0	56.9	40.5	21.0	41.1	50.2

Hard version of semantic guided feature selection chooses more suitable feature levels than heuristic guided selection.

Carnegie Mellon

Visualization of hard feature selection



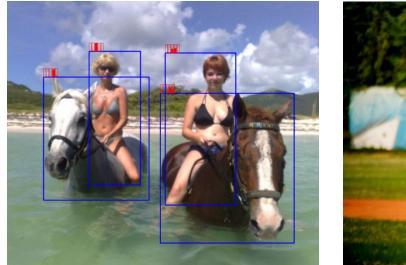
Ablation study: the effect of feature selection

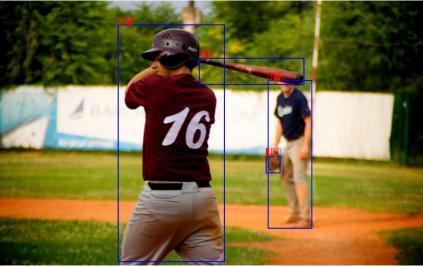
	Heuristic guided	Semantic guided							
		Hard selection	Soft selection	АР	AP ₅₀	AP ₇₅	AP _s	AP _M	APL
RetinaNet (anchor- based)	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
Ours	\checkmark			35.9	54.8	38.1	20.2	39.7	46.5
(anchor- free)		\checkmark		37.0	55.8	39.5	20.5	40.1	48.5
			\checkmark	38.0	56.9	40.5	21.0	41.1	50.2

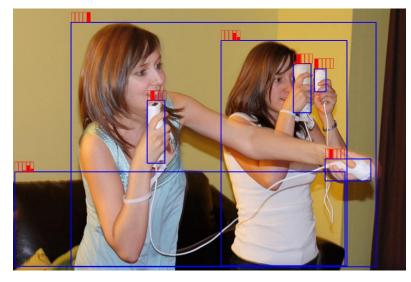
Hard selection doesn't fully explore the network potential. Using similarity from multiple features is helpful.

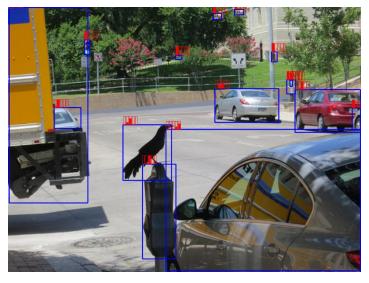
Visualization of soft feature selection

Visualization of soft feature selection









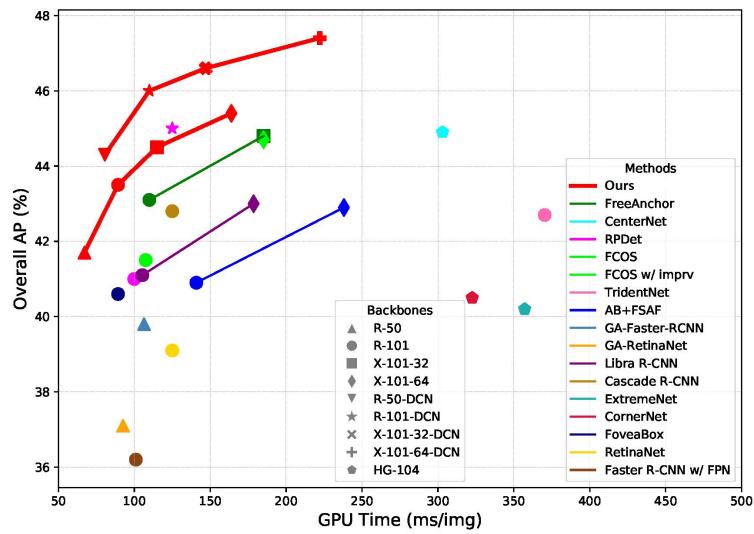
Ablation study: the effect on different feature pyramids

Feature pyramid	Heuristic guided selection	Semantic guided selection	АР	AP ₅₀	AP ₇₅	APs	AP _M	APL
	\checkmark		35.9	54.8	38.1	20.2	39.7	46.5
FPN		\checkmark	38.0	56.9	40.5	21.0	41.1	50.2
סרס	\checkmark		36.8	57.2	39.0	22.0	41.0	45.9
BFP		\checkmark	38.8	58.7	41.3	22.5	42.6	50.8

Runtime analysis

Backbone	Method	АР	AP ₅₀	Runtime (FPS)
DocNot EQ	RetinaNet (anchor-based)	35.7	54.7	11.6
ResNet-50	Ours (anchor-free)	38.8	58.7	14.9
ResNet-101	RetinaNet (anchor-based)	37.7	57.2	8.0
	Ours (anchor-free)	41.0	60.7	11.2
ResNeXt-101	RetinaNet (anchor-based)	39.8	59.5	4.5
	Ours (anchor-free)	43.1	63.7	6.1

Comparison with state of the arts



39

References

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.

Liu, Wei, et al. "Ssd: Single shot multibox detector." *European conference on computer vision*. Springer, Cham, 2016.

Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *Proceedings of the IEEE international conference on computer vision*. 2017.

Pang, Jiangmiao, et al. "Libra r-cnn: Towards balanced learning for object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Wang, Jingdong, et al. "Deep high-resolution representation learning for visual recognition." arXiv preprint arXiv:1908.07919 (2019).

Ghiasi, Golnaz, et al. "Nas-fpn: Learning scalable feature pyramid architecture for object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Tan, Mingxing, et al. "Efficientdet: Scalable and efficient object detection." arXiv preprint arXiv:1911.09070 (2019).

Huang, Lichao, et al. "Densebox: Unifying landmark localization with end to end object detection." *arXiv preprint arXiv:1509.04874* (2015).

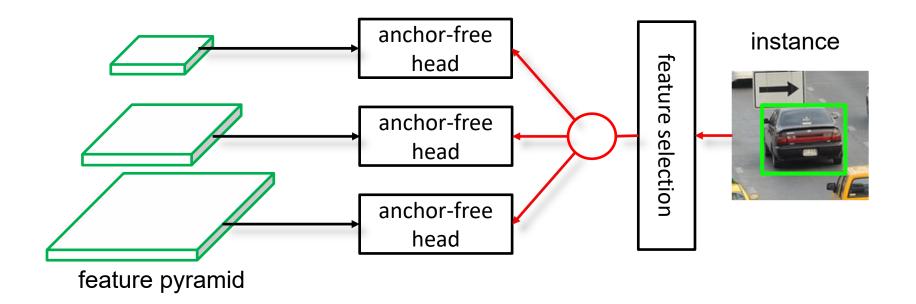
Zhu, Chenchen, Yihui He, and Marios Savvides. "Feature selective anchor-free module for single-shot object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Zhu, Chenchen, et al. "Soft Anchor-Point Object Detection." *arXiv preprint arXiv:1911.12448* (2019).

Conclusion

Free feature selection is one of major differences between anchor-free and anchor-based methods.

Semantic guided feature selection is the key!



THANKS!